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ABSTRACT
The business relationships between Autonomous Systems (ASes)
can provide fundamental insights into the Internet’s routing ecosys-
tem. Throughout the last two decades, many works focused on how
to improve the inference of those relationships. Yet, it has proven
difficult to assemble extensive ground-truth data sets for valida-
tion. Therefore, more recent works rely entirely on relationships
extracted from BGP communities to serve as "best-effort" ground-
truth. In this paper, we highlight the shortcomings of this trend. We
show that the best-effort validation data does not cover relation-
ships between ASes within the Latin American (LACNIC) service
region even though ~14% of all inferred relationships are from that
region. We further show that the overall precision of 96-98 % for
peering relationships achieved by three of the most prominent
algorithms can drop by 14-25 % when considering only peering
relationships between Tier-1 and other transit providers. Finally,
we discuss potential ways to overcome the presented challenges in
the future.
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1 INTRODUCTION
The Internet consists of many autonomous systems (ASes) that
exchange reachability information (also known as routes). Which
routes are made available to a neighbor often depends on business
relationships. While actual business relationships are rather com-
plex [25, 26], we often categorize them into three different types:
(i) provider-to-customer (P2C), (ii) settlement-free peering partners
(P2P), and (iii) relationships between ASes that belong to the same
organization called sibling-to-sibling (S2S).

Many researchers rely on accurate relationship information for
(i) simulations of routing incidents [48, 49, 59], (ii) IP-to-AS map-
ping [32, 46], or (iii) network (resource) management [40, 62]. Yet,
there is no organisation or entity that can provide authoritative
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knowledge for those relationships. Over the last two decades, this
lead to a large corpus of research focusing on inferring relationships
from, e.g., routing information [22, 24, 26, 27, 36, 38, 43].

Yet, there are two major problems that those inferences suffer
from: (i) limited visibility into the Internet’s AS interconnection
graph and (ii) lack of ground-truth validation data. The visibil-
ity problem is a well-known challenge in Internet topology re-
search [3, 16, 29, 52]. While various partial solutions have been
proposed (e.g., using data plane information [7, 18, 21], routing
policy databases [9], or BGP community encodings at IXP route
servers [28]), it is still a challenge to generate a comprehensive
AS-level typology that also captures, e.g., private network intercon-
nections [64].

The lack of ground-truth validation data has been pointed
out as a challenge many times (e.g., [24, 43, 60]), yet recently
proposed and evaluated algorithms (see, [36, 38]) rely entirely on
"best-effort" validation data compiled from BGP communities—a
technique initially introduced and used (among others) by Luckie
et al. [43].
To better understand the implications of this trend, this paper fo-
cuses on the basic question: How good is our "best-effort" validation
(data)? In particular, our work makes the following contributions
towards answering this question:

• Bias Analysis.We analyze to which degree the geograph-
ical and topological biases within the sets of inferred and
validated relationships match (§5). We uncover significant
mismatches: While the "best-effort" validation data covers
31 % of all links between ASes in the ARIN region, it only
covers less than 1 % of links in the LACNIC region. Yet, both
regions contain roughly 15% of the inferred relationships.

• Implication analysis.Weanalyze how such biasmismatches
may affect classification correctness for three (ASRank [43],
ProbLink [36], and TopoScope [38]) classification algorithms1
and uncover substantial drops in precision for certain groups
of peering links (§6). In particular, we observe that the near-
perfect precision of 96-98 % for the entire validation data set
drops by 14-25 % (depending on the algorithm) for peering
relationships between Tier-1 and transit providers.

• Future outlook: We discuss, in-depth, different approaches
for compiling less biased and more complete validation data
sets (§7) and highlight (i) the need for active discourse with
operators and (ii) how the routing ecosystem’s continuous
change can be exploited to over-sample validation data.

To allow for the reproduction of our results and to facilitate the
analysis of future validation efforts, we make our research code
publicly available via:

https://gitlab.mpi-klsb.mpg.de/lprehn/imc2021_breval
1While we would have also analyzed UNARI [22], the authors do not provide publicly
available artifacts.
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2 WHY SHOULD WE CARE ABOUT BIAS?
Biases commonly arise in all forms of classi�cations�whether one
looks at face detection [11], patient treatment [54], or criminal
behavior [53]. While those disciplines may have stronger social
impacts, the correctness of business relationships may have far-
reaching and unintended consequences when studying the Inter-
net's routing ecosystem. For instance, Müller et al. [50] recently
proposed an algorithm that relies on the inferred relationships be-
tween Internet Exchange Point (IXP) members to identify spoofed
packets (i.e., packets with a forged source address). The misclas-
si�cation of a P2C as a P2P relationship could potentially result
in many packets being falsely �agged as spoofed. If an IXP would
publicly disclose, e.g., the number of spoofed packets per member,
the reputation of certain members could sustain damage.

Yet, how did bias a�ect this example? IXPs are often built with the
intention to keep local tra�c local [3], i.e., they connect ASes within
the samegeographical region .2 As most geographical regions
have their own operator meetings, conferences, and communities�
e.g., RIPE [57], NANOG [51], or APRICOT [5]�that release di�erent
recommendations on how to operate certain types of networks, the
best practices for routing can di�er among regions (and IXPs). For
instance, Marcos et al. [45] recently reported that the usage patterns
for AS path-prepending (a commonly used tra�c engineering tech-
nique) vary strongly by region and over time. Similarly,topologi-
cal biasescan arise from how ASes of di�erent sizes or locations
within the Internet's hierarchy select their peering policies [42].

In summary, features such as the geographical or topological
positioning of a network can greatly in�uence the routing deci-
sions taken by its operators. This may become important when
relationships are explicitly or implicitly3 used in narrow contexts,
e.g., only between members of an IXP. In such a case, the correct-
ness estimates that were obtained from a potentially larger base of
relationships may provide a false sense of safety which may result
in economical consequences (as in the example above).

3 BACKGROUND
In this section, we �rst give a brief introduction to selected4 relation-
ship inference algorithms, then provide details on previously used
techniques for obtaining validation data, and �nally summarize the
already-known sources of bias in validation data.

3.1 Classi�cation Algorithms
Lixin Gao was the �rst to describe the Internet as a strict hierarchy
in which customers receive transit from the providers "above" them
and redistribute routes according to economically incentives [24].
Based on this hierarchy, she described the notion of a "valley-free"
path�a path that travels strictly upwards, then to at most one AS
of the same height, and then strictly downhill. Using this property,
her proposed algorithm tries to maximize the number of valley-free
paths.

Rather than maximizing the number of valley-free paths, more
recent algorithms often �rst determine the clique of provider-free

2usually only a small fraction of ASes connect remotely [13].
3e.g., while using bdrmapit�a tool to map IPs to routers and ASes that relies on
relationship inferences�on paths obtained from a limited number of vantage points
4based on signi�cance to our work and recency.

ASes at the "top" of the hierarchy and then iteratively infer rela-
tionships. In 2013, Luckie et al. [43] proposed ASRank�one of the
most-used classi�ers till today. ASRank utilizes AS-triplets, a new
metric called "transit-degree", and an extensive list of heuristics
to classify relationships. Giotsas et al. later modi�ed the ASRank
algorithm to adapt it to the IPv6 routing ecosystem [27].

In 2014, Giotsas et al. used routing information, IP paths, and ge-
olocation data to infer two more complex types of AS relationships:
partial-transit and hybrid relationships [26]. If a provider exports
routes towards its customers and peers but not towards its own
providers, then the provider and customer have a partial-transit
relationship. Further, two ASes have a hybrid relationship if their
observed relationships di�er throughout various Points of Presence
(PoPs).

In 2019, Jin et al. proposed ProbLink�a meta-classi�er that builds
upon an initial classi�cation (e.g., from ASRank) [36]. The algorithm
assigns a probability to each link to be of a certain type based on,
e.g., the relationships of other nearby links, re�nes the selected
relationship based on the highest probability, and iterates those two
steps until convergence. UNARI [22] takes the idea of probability
one step further and produces a measure of certainty for each link
type as its outcome. TopoScope [38]�as the newest classi�cation
algorithm�applies machine learning techniques on a large set of
link features to perform its classi�cation. Notably, this algorithm
also predicts additional AS links that, despite note being visible,
might exist.

3.2 Validation Data
Compiling a set of ground-truth labels is crucial to properly evaluate
any classi�cation algorithm. Yet, this step has proven to be rather
di�cult for AS relationships. Before Luckie et al [43], only the works
by Gao [24] and Dimitropoulos et al. [20] presented validation data
from a Tier-1 and via operator surveys, respectively.

In 2013, Luckie et al. compiled their validation data from (i)
directly reported relationships (e.g., by operators through a web
interface), (ii) relationships extracted from routing policies encoded
in WHOIS databases (more speci�cally, inside theirautnumrecords)
via the Routing Policy Speci�cation Language (RPSL), and (iii) re-
lationships extracted from BGP Community encodings within the
Internet Routing Registry (IRR) databases or public documentation
(e.g., ISPs that host such encoding on their website).

While relying on multiple databases allows for frequent re-
computation of validation data, the sources (ii) and (iii) su�er
from a set of well-known challenges. Most records within the
WHOIS databases are added and maintained voluntarily, hence,
some records get stale (i.e., become inconsistent with publicly visi-
ble routing information) over time [16].

While the same may be true for the publicly documented BGP
community encodings, those, in addition, su�er from ambiguity
problems. Simply put, BGP communities are just colon-separated
value pairs5 [14] that can be tagged onto routes. Which information
is encoded into/decoded from a speci�c BGP community depends
on the AS that sets/reads it. Ambiguity is introduced when a single
BGP community represents di�erent meanings to (potentially over-
lapping) sets of ASes, e.g., while the BGP community3356:666

5or triplets, see large BGP communities [31].
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could be recognized as an attempt to blackhole a route [39], AS 3356
(Level3/CenturyLink/Lumen) uses it to tag peering routes [56].

Despite those challenges, the data compiled by Luckie et al.
presents the �rst extensive source of validation information. Recent
classi�cation e�orts rely solely on re-computations of their third
data source�relationships from BGP communities [22, 36, 38].

3.3 Existing Insights into Validation Bias
Hard-to-Infer Links. Jin et al. [36] reported on sets of links for
which it is challenging to infer them correctly. They describe those
"hard" links as links with at least one of the following characteristics:
(i) node-degreeŸ 100, (ii) observed by50� 100vantage points, (iii)
neither incident to a vantage point nor a clique AS, (iv) stub links
for which there is no triplet containing two consecutive clique ASes,
and (v) links for which a simple top-down classi�cation results in a
con�ict. They further showed that even sophisticated algorithms
like ASRank wrongly infer many of the relationships for hard links
and that the validation data set is skewed towards links for which
it is easy to infer them correctly.

Clique & Vantage Point Links. Luckie et al. [43] show that
for their 2014 validation data set links incident to a clique AS are
over-represented while links between stubs and non-clique ASes
are under-represented. They also note that this disparity is mostly
due to the signi�cant biased introduced by the community-based
data set�the validation data that has been used for the more recent
validations. Similarly, they report that the community-based data
set over-represents links incident to a vantage point over those
only remotely visible.

Complex Relationships. As discussed in Ÿ3.1, AS relationships
can di�er based on the PoP the link is observed at. Giotsas et al. [26]
reported that their improved algorithm exposed around 1k relation-
ships as hybrid and around 3k relationships as partial-transit. As
the inference of such relationships can be ambiguous, they should
be handled separately during the validation process.

4 OBTAINING & CLEANING DATA
In this section, we �rst describe how we obtain validation and infer-
ence data (Ÿ4.1). Afterward, we take a closer look at the validation
labels and identify entries that either need to be removed or handled
carefully (Ÿ4.2).

4.1 Obtaining Validation Data & Inferences
Validation Data. While ASRank's validation data from April 2013
is publicly available at [12], ProbLink and TopoScope do not contain
validation data in their public repositories [35,37]. Upon request, we
received the same validation data for both tools�12 snapshots un-
equally spread between January 2014 and April 2018. Each snapshot
was generated using the community-based relationship extraction
method described by Luckie et al. [43] for their ASRank validation.

Inference Data. The monthly generated inference snapshots
that are publicly available for ASRank, ProbLink, and TopoScope
only overlap throughout 2019. As this period is not covered by any
of our validation snapshots, we requested (and promptly received)
an inference snapshot for April 2018 generated by ProbLink. To pro-
duce comparable results for all three algorithms, we continue using
the inference and validation snapshots for April 2018 throughout

the remainder of the paper (unless explicitly speci�ed otherwise).
Notably, we use the term "inferred links" to refer to all AS links
visible in the ASRank data set for April 2018.

4.2 Label Quality & Treatment
Spurious Labels. When taking a �rst look at the validation data,
we notice 15 AS relationships formed with AS 23456. This AS is
also known as "AS_TRANS" and is exclusively used to represent
32-bit ASNs for devices that only support 16-bit ASNs; therefore,
AS_TRANS does not represent an actual network and hence can not
have any business relationships. We further �nd 112 relationships
involving reserved (e.g., for documentation or internal use, see [34])
ASes that should neither be publicly routed nor be used to validate
business relationships.

Ambiguous Label Treatment. As brie�y discussed in section 3,
two ASes can have di�erent relationships based on the PoPs they
interconnect at [26]. In April 2018, the received validation data
contains multiple labels for 246 relationships involving 233 di�er-
ent ASes. Arguably, those entries should be ignored for validation
unless the classi�cation algorithm explicitly infers or handles them;
otherwise, it is ambiguous whether a simple relationship prediction
is correct. Interestingly, we �nd that those validation entries are
handled very di�erently in practice. If we treat an entry with mul-
tiple labels as P2P if itstartswith P2P and otherwise as P2C, the
number of P2P and P2C links in the validation data for 2017 and
2018 matchesexactlythose reported in the Toposcope paper [38].
We observe a similar match for the numbers reported for 2017 in
the work by Jin et al. [36] if we treat an entry with multiple labels
alwaysas P2C.

Sibling Labels. Sibling (S2S) relationships represent links be-
tween two ASes that belong to the same organization and, hence,
can use their resources interchangeably. When applying CAIDA's
AS-to-Organisation data set [33], we �nd that 210 relationships
in our validation data set and 2800 of the inferred relationships
are actually sibling relationships and should be ignored during the
validation process (unless speci�cally handled by the classi�cation
algorithm).

5 IS OUR VALIDATION DATA BIASED?
Regional Imbalance. As brie�y discussed in section 2, how an
AS routes tra�c may depend on its geographic region. To analyze
regional bias, we �rst map each ASN to a geographic service region
using IANA's list of initial ASN assignments [34] and then re�ne
the mapping based on the daily delegation �les published by the
Regional Internet Registries (RIRs) [2, 4, 6, 41, 58]. We abbreviate
AFRINIC, APNIC, ARIN, LACNIC, and RIPE NCC as AF, AP, AR,
L, and R, respectively. While IANA's list bootstraps the mapping
for all ASes, the RIR delegation �les correct the mapping for re-
sources transferred between di�erent regions after IANA's initial
assignments [55]. Notably, no mapping from ASes to geographical
regions is perfect; even with large amounts of active scanning, we
would neither be able to reliably measure all IPs (and respectively
infrastructure) that belong to an AS [8] nor would we be able to
perfectly geolocate them [15]. Yet, we argue that our mapping�
which relies on an AS' organizational service region rather than its
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Figure 1: Regional imbalance: Fraction of
links (top) and validation coverage (bottom)
per geographical group with AF, AP, AR, L,
and R denoting AFRINIC, APNIC, ARIN, LAC-
NIC, and RIPE, respectively.

Figure 2: Topological imbalance: Fraction
of links (top) and validation coverage (bot-
tom) per topological group with H, S, T1, and
TR denoting Hypergiants, Stub ASes, Tier-1
providers, and Transit providers, respectively.

Figure 3: Transit degree imbalance for
transit links: consistently colored heatmaps
for inferred (top) and validatable (bottom)
links, binned by the transit degree of their
incident ASes.

infrastructure footprint�is still representative enough to provide
hints on regional biases, if they really exist.

Using this mapping, we separate AS links into di�erent link
classes: If one of the involved ASes is reserved, we discard the link.
If both ASes belong to the same region, we mark the link class
as<region>° (e.g.,AF° for links between two ASes in AFRINIC).
If the ASes belong to di�erent regions, we mark the link class as
<A468>=1>-<A468>=2> where<A468>=1> is always the lexicographi-
cally smaller region, i.e., we treat AS links as undirected links.

Figure 1 shows the distribution of inferred relationships onto
link classes as fractions (at the top) as well as the validation cov-
erage (at the bottom), i.e., the fraction of links in a class for which
we have validation labels. We observe that most (~79 %) of the rela-
tionships that we infer are between ASes of the same region. Yet,
we observe drastic di�erences for the validation coverage among
region-internal relationships: Even though we infer roughly the
same number ofAR° andL° relationships, we validate more than
~31 % ofAR° links but less than 1 % ofL° links.

Topological Imbalance. Next, we focus on whether the posi-
tioning of an AS in the Internet's hierarchical structure yields a
mismatch in bias. First, we classify each AS into either "Stub" or
"Transit" based on whether the AS has at least one other AS in
its customer cone (see CAIDA's customer cone data set�available
at [12]). Afterwards, we re�ne this basic mapping using two ad-
ditional data sources: We re-classify ASes as (i) "Tier-1" providers
based on a list from Wikipedia [63]6 and (ii) "Hypergiants" (i.e., the
largest content providers) based on the list generated by Böttger et
al. [10].
Figure 2 shows the topological balance based on those classes in
a similar style as Figure 1. We observe that we only have substan-
tial validation data for classes that involve Tier-1 ASes. While this

6which largely overlaps with the set of clique ASes inferred by ASRank.

insight in itself is not very new (compare [43] and [36]), we �nd
its impact to be more drastic than previously reported: For our two
majority classes, S-TR and TR°, that, in summary, contain 82 % of
all inferred links, we can only validate 6 % and 12 % of relationships,
respectively.

While most of the inferred links are in the S-TR class, this class
is rather uninteresting as it largely consists of P2C relationships
(67.8% according to validation data) for which all three classi�ers
are well-known to perform near-perfect. Thus, we drill deeper into
our second largest class, links between Transit providers.

In particular, we want to understand whether the distribution of
AS "size" matches between inferred and validated TR°links. Figure 3
shows a heatmap over all TR°links in the inferred data (top) and the
validated data (bottom) where the x-axis shows the transit degree
for the larger incident AS while the y-axis shows the transit degree
for the smaller incident AS.7 We observe that the vast majority of
TR° links that we infer are between relatively small transit ASes
(i.e., in the left-bottom corner). This mismatches with the more
uniform distribution of our validation data. We further repeated
this experiment with two alternative metrics: the provider-peer-
observed customer cone�which relies on the correctness of the
inferred business relationships and might hence be biased�and the
node degree. The related �gures (which can be found in Appendix
B) suggest an even stronger mismatch.

6 IS OUR VALIDATION BIASED?
Now that we have a basic understanding of regional and topologi-
cal bias mismatches in our validation data, we analyze how such
mismatches translate to di�erences in classi�cation correctness. For
each of the tested classi�ers, we calculate two confusion matrices
7The row above 150 and the column to the right of 1500 catch all transit degree equal of
larger than 150 and 1500, respectively. This prevents the few ASes with a substantially
larger transit degree from distorting the plot.
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